前の記事の続き。後でひとつの記事にまとめるかも。
カーブに沿ったスライディング
- ΦX,A',Y( (X^□p);f ) = ΦX,A,Y(f);hom(p, Y) : X→hom(A', Y)
左辺のΦの内側:
(X^□p);f : X□A'→Y = [ λ(x, a')∈X□A'.( f(x, p(a')) ∈Y) ALSO λ(x→x', a')∈X□A'.( f(x→x', p(a')) ∈Y) OR λ(x, a'→a'')∈X□A'.( f(x, p(a'→a'')) ∈Y) ] : X□A'→Y
左辺:
Φ( (X^□p);f ) : X→hom(A', Y) = [ λ0x∈X.( [ λ0a'∈A'.( f(x, p(a')) ∈Y) ALSO λ1a'→a''∈A'.( f(x, p(a'→a'')) ∈Y) ] ∈Hom(A', Y) ) ALSO λ1x→x'∈X.( [ λ01a'∈A'.( f(x→x', p(a')) ∈Y) ] ∈Defm(A', Y)) ] : X→hom(A', Y)
右辺を計算するにあたって、Φ(f) = F とする。
- F : X→hom(A, Y)
- p:A→A'
- hom(p, Y) : hom(A, Y)→hom(A', Y)
右辺:
F;hom(p, Y) = F;(λτ∈hom(A, Y).( hom(p, Y)(τ) )) = λξ∈X./( hom(p, Y)(τ) / τ = F(ξ) )/ = λ{x ALSO x→x'}∈X./( hom(p, Y)({u ALSO u⇒v}) / {u ALSO u⇒v} = F({x ALSO x→x'}) )/ = λ{x ALSO x→x'}∈X./( [ λ0u∈hom(A, Y).( p;u ∈Hom(A, Y) ) ALSO λ1u⇒v∈hom(A, Y).( p;;(u⇒v) ∈Defm(A, Y) ) ]({u ALSO u⇒v}) / {u ALSO u⇒v} = F({x ALSO x→x'}) )/ = λ{x ALSO x→x'}∈X./( { ( p;u ∈Hom(A, Y) ) ALSO ( p;;(u⇒v) ∈Defm(A, Y) ) } / {u ALSO u⇒v} = F({x ALSO x→x'}) )/ = λ{x ALSO x→x'}∈X.( { ( p;F(x) ∈Hom(A, Y) ) ALSO ( p;;(F(x→x')) ∈Defm(A, Y) ) } ) = [ λ0x∈X.( p;F(x) ∈Hom(A, Y) ) ALSO λ1x→x'∈X.( p;;(F(x→x')) ∈Defm(A, Y) ) ]
ここで、次を計算する。
- For x∈X(0), p;F(x) ∈Hom(A, Y)
F(x) = [ λ0a∈A.( f(x, a) ∈Y) ALSO λ1t→t'∈A.( f(x, t→t') ∈Y) /* 都合により t→t' */ ] ∈Hom(A, Y) p;F(x) = p;(λξ∈A.( F(x)(ξ) ) = λτ∈A'./( F(x)(ξ) / ξ = p(τ) )/ = λ{a' ALSO a'→a''}∈A'./( F(x)({{a ALSO t→t'}}) / {a ALSO t→t'} = p({a' ALSO a'→a''}) )/ = λ{a' ALSO a'→a''}∈A'./( [ λ0a∈A.( f(x, a) ∈Y) ALSO λ1t→t'∈A.( f(x, t→t') ∈Y) /* 都合により t→t' */ ]({{a ALSO t→t'}}) / {a ALSO t→t'} = p({a' ALSO a'→a''}) )/ = λ{a' ALSO a'→a''}∈A'./( { ( f(x, a) ∈Y) ALSO ( f(x, t→t') ∈Y) } / {a ALSO t→t'} = p({a' ALSO a'→a''}) )/ = λ{a' ALSO a'→a''}∈A'.( { ( f(x, p(a')) ∈Y) ALSO ( f(x, p(a'→a'')) ∈Y) } ) = [ λ0a'∈A'.( f(x, p(a')) ∈Y) ALSO λ1a'→a''∈A'.( f(x, p(a'→a'')) ∈Y) ]
さらに次を計算する。
- For x→x'∈X(1), p;;(F(x→x')) ∈Defm(A, Y)
F(x→x') = λ01a∈A.( f(x→x' a) ∈Y) p;;F(x→x') = p;;(λ01a∈A.( f(x→x' a) ∈Y)) = λ01a'∈A'./( ( f(x→x' a) ∈Y) / a = p(a') )/ = λ01a'∈A'./( ( f(x→x' a) ∈Y) / a = p(a') )/ = λ01∈A'.( f(x→x' p(a')) ∈Y)
以上の計算を組み合わせれば、左辺=右辺が出る。
次の記事に続く。